159 research outputs found

    Structure and rheological properties of model microemulsion networks filled with nanoparticles

    Get PDF
    Model microemulsion networks of oil droplets stabilized by non ionic surfactant and telechelic polymer C18-PEO(10k)-C18 have been studied for two droplet-to-polymer size ratios. The rheological properties of the networks have been measured as a function of network connectivity and can be described in terms of simple percolation laws. The network structure has been characterised by Small Angle Neutron Scattering. A Reverse Monte Carlo approach is used to demonstrate the interplay of attraction and repulsion induced by the copolymer. These model networks are then used as matrix for the incorporation of silica nanoparticles (R=10nm), individual dispersion being checked by scattering. A strong impact on the rheological properties is found for silica volume fractions up to 9%

    Universal scattering behavior of co-assembled nanoparticle-polymer clusters

    Full text link
    Water-soluble clusters made from 7 nm inorganic nanoparticles have been investigated by small-angle neutron scattering. The internal structure factor of the clusters was derived and exhibited a universal behavior as evidenced by a correlation hole at intermediate wave-vectors. Reverse Monte-Carlo calculations were performed to adjust the data and provided an accurate description of the clusters in terms of interparticle distance and volume fraction. Additional parameters influencing the microstructure were also investigated, including the nature and thickness of the nanoparticle adlayer.Comment: 5 pages, 4 figures, paper published in Physical Review

    Mechanical Properties of End-crosslinked Entangled Polymer Networks using Sliplink Brownian Dynamics Simulations

    Full text link
    The mechanical properties of a polymeric network containing both crosslinks and sliplinks (entanglements) are studied using a multi-chain Brownian dynamics simulation. We coarse-grain at the level of chain segments connecting consecutive nodes (cross- or sliplinks), with particular attention to the Gaussian statistics of the network. Affine displacement of nodes is not imposed: their displacement as well as sliding of monomers through sliplinks is governed by force balances. The simulation results of stress in uniaxial extension and the full stress tensor in simple shear including the (non-zero) second normal stress difference are presented for monodisperse chains with up to 18 entanglements between two crosslinks. The cases of two different force laws of the subchains (Gaussian chains and chains with finite extensibility) for two different numbers of monomers in a subchain (no = 50 and no = 100) are examined. It is shown that the additivity assumption of slip- and crosslink contribution holds for sufficiently long chains with two or more entanglements, and that it can be used to construct the strain response of a network of infinitely long chains. An important consequence is that the contribution of sliplinks to the small-strain shear modulus is about ⅔ of the contribution of a crosslink

    Effect of Nanoparticle Size on the Morphology of Adsorbed Surfactant Layers

    Get PDF
    The surface aggregates structure of dimethyldodecylamine-N-oxide (C12DAO) in three silica dispersions of different particle sizes (16 - 42 nm) was studied by small-angle neutron scattering (SANS) in a H2O/D2O solvent mixture matching the silica. At the experimental conditions (pH 9) the surfactant exists in its nonionic form and the structure of the adsorbed layer is not affected by added electrolyte. It is found that C12DAO forms spherical surface micelles of 2 nm diameter on the 16 nm silica particles, but oblate ellipsoidal surface micelles are formed on the 27 and 42 nm particles. The dimensions of these oblate surface aggregates (minor and major semi-axes Rn and Rlat) are similar to those of C12DAO micelles in the aqueous solutions. It is concluded that the morphological transition from spherical to ellipsoidal surface aggregates is induced by the surface curvature of the silica particles. A comparison of the shape and dimensions of the surface aggregates formed by C12DAO and C12E5 on the 16 nm silica particles demonstrates that the nature of the surfactant head group does not determine the morphology of the surface aggregates, but has a strong influence on the number of surface aggregates per particle, due to the different interactions of the head groups with the silica surface

    Stabilization and Controlled Association of Inorganic Nanoparticles using Block Copolymers

    Full text link
    We report on the structural properties of mixed aggregates made from rare-earth inorganic nanoparticles (radius 20 Angstroms) and polyelectrolyte-neutral block copolymers in aqueous solutions. Using scattering experiments and Monte Carlo simulations, we show that these mixed aggregates have a hierarchical core-shell microstructure. The core is made of densely packed nanoparticles and it is surrounded by a corona of neutral chains. This microstructure results from a process of controlled association and confers to the hybrid aggregates a remarkable colloidal stability.Comment: 14 pages, 5 figure

    Well dispersed fractal aggregates as filler in polymer-silica nanocomposites: long range effects in rheology

    Get PDF
    We are presenting a new method of processing polystyrene-silica nanocomposites, which results in a very well-defined dispersion of small primary aggregates (assembly of 15 nanoparticles of 10 nm diameter) in the matrix. The process is based on a high boiling point solvent, in which the nanoparticles are well dispersed, and controlled evaporation. The filler's fine network structure is determined over a wide range of sizes, using a combination of Small Angle Neutron Scattering (SANS) and Transmission Electronic Microscopy (TEM). The mechanical response of the nanocomposite material is investigated both for small (ARES oscillatory shear and Dynamical Mechanical Analysis) and large deformations (uniaxial traction), as a function of the concentration of the particles. We can investigate the structure-property correlations for the two main reinforcement effects: the filler network contribution, and a filler-polymer matrix effect. Above a silica volume fraction threshold, we see a divergence of the modulus correlated to the build up of a connected network. Below the threshold, we obtain a new additional elastic contribution of much longer terminal time than the matrix. Since aggregates are separated by at least 60 nm, this new filler-matrix contribution cannot be described solely with the concept of glassy layer (2nm)

    Charge-Fluctuation-Induced Non-analytic Bending Rigidity

    Full text link
    In this Letter, we consider a neutral system of mobile positive and negative charges confined on the surface of curved films. This may be an appropriate model for: i) a highly charged membrane whose counterions are confined to a sheath near its surface; ii) a membrane composed of an equimolar mixture of anionic and cationic surfactants in aqueous solution. We find that the charge fluctuations contribute a non-analytic term to the bending rigidity that varies logarithmically with the radius of curvature. This may lead to spontaneous vesicle formation, which is indeed observed in similar systems.Comment: Revtex, 9 pages, no figures, submitted to PR

    Modeling of Intermediate Structures and Chain Conformation in Silica-Latex Nanocomposites Observed by SANS During Annealing

    Full text link
    The evolution of the polymer structure during nanocomposite formation and annealing of silica-latex nanocomposites is studied using contrast-variation small angle neutron scattering. The experimental system is made of silica nanoparticles (Rsi \approx 8 nm) and a mixture of purpose-synthesized hydrogenated and deuterated nanolatex (Rlatex \approx 12.5 nm). The progressive disappearance of the latex beads by chain interdiffusion and release in the nanocomposites is analyzed quantitatively with a model for the scattered intensity of hairy latex beads and an RPA description of the free chains. In silica-free matrices and nanocomposites of low silica content (7%v), the annealing procedure over weeks at up to Tg + 85 K results in a molecular dispersion of chains, the radius of gyration of which is reported. At higher silica content (20%v), chain interdiffusion seems to be slowed down on time-scales of weeks, reaching a molecular dispersion only at the strongest annealing. Chain radii of gyration are found to be unaffected by the presence of the silica filler
    corecore